UQ Summer Research Project Description - 2026

Project title:	3D printed Wear-Resistant Occlusal Splint
Hours of	6 weeks, 12 Jan – 20 Feb 2026
engagement &	Hours of engagement: 24 hours
delivery mode	Location: Herston, Oral Health Centre, School of Dentistry
	Delivery Mode: Can be offered in hybrid mode of virtual (30%) and in-
	person/onsite (70%)
Description:	This summer project focuses on the 3D printing of occlusal splints with
	enhanced wear resistance, addressing an important challenge in
	restorative and preventive dentistry. Occlusal splints are widely used
	for patients with bruxism and other functional disorders, but their long-
	term effectiveness depends on material durability and resistance to
	wear under simulated chewing forces. The student will receive training
	in the operation of a dental 3D printer and learn how to design and
	optimize fabrication parameters such as print orientation, layer
	thickness, and infill density. Using these skills, the student will
	fabricate occlusal splint specimens under different conditions and
	systematically investigate how these parameters affect performance.
	To evaluate durability, the project will employ a chewing simulator to
	replicate oral loading conditions and measure wear resistance of the
	printed splints. Data will be collected, analyzed, and interpreted to
	determine optimal printing strategies for high-performance occlusal
	splints. By the end of the six-week project, the student will have gained
	valuable experience in digital manufacturing, experimental testing, and
	data analysis, while contributing to ongoing research in dental
	biomaterials. The outcomes will include a report and presentation
	summarizing the findings, with potential to inform future publications
Expected	in the field of biomaterials and clinical dentistry. This project will provide undergraduate students with hands-on
learning	experience in applying advanced digital manufacturing and materials
outcomes and	evaluation techniques to address a clinically relevant dental challenge.
deliverables:	The focus is on designing, fabricating, and testing 3D-printed occlusal
donvoidblos.	splints with improved wear resistance, a key factor in ensuring long-
	term durability and patient comfort. Learning Outcomes for the Student
	During the six-week program, the student can expect to gain skills and
	knowledge across the following areas: 3D Printing and Digital Design:
	Receive proper training in the operation of a dental 3D printer. Learn
	how to prepare digital files and optimize printing parameters (e.g., layer
	thickness, infill density, orientation) for occlusal splint fabrication.
	Understand the impact of different fabrication parameters on material
	properties and performance. Experimental Design and Materials
	Testing: Plan and conduct experiments to systematically evaluate
	splint specimens under varying fabrication conditions. Gain hands-on
	experience with a chewing simulator to assess wear resistance,
	simulating real oral environments. Collect, record, and analyze data
	on wear patterns, surface roughness, and material degradation.
	Critical Thinking and Research Skills: Develop the ability to link printing
	parameters with material performance, drawing evidence-based
	conclusions. Engage with relevant literature on occlusal splints, 3D

	T
	printing in dentistry, and biomaterials testing. Strengthen problem-
	solving skills by troubleshooting printing challenges and optimizing
	workflows. Communication and Professional Development: Present
	findings in clear and concise formats, such as data reports, figures,
	and short presentations. Receive mentoring in scientific writing, with
	the opportunity to contribute to a future publication or conference
	abstract. Build confidence in oral communication by delivering a final
	presentation to peers and supervisors. Expected Deliverables By the
	end of the project, the student will be expected to: Produce a set of 3D-
	printed occlusal splint samples optimized for wear resistance. Collect
	and analyze wear resistance data using the chewing simulator. Prepare
	a concise written report summarizing methodology, results, and
	recommendations. Deliver an oral presentation outlining key findings
	and reflecting on the skills gained during the project.
Suitable for:	This project is open to undergraduate students with an interest in
Guitable for.	materials science, mechanical engineering, biomedical engineering, or
	dentistry-related studies. It will particularly suit students who are:
	Interested in 3D printing, digital design, and advanced manufacturing
	techniques. Keen to learn about biomaterials and their clinical
	·
	applications in dentistry. Motivated to develop hands-on skills in
	experimental design, materials testing, and data analysis. Considering
	future pathways such as honours, research higher degrees (MPhil/PhD)
	in materials science, engineering, or biomedical research. From
	programs including Materials Science and Engineering, Mechanical
	Engineering, Biomedical Engineering, Pre-Medical Provisional
	pathways, and related disciplines. Note: As in previous years, MD
	students are not eligible to participate due to the shorter break in the
	MD academic calendar.
Primary	Dr Abdalla Ali
Supervisor:	
	abdalla.ali@uq.edu.au
	https://dentistry.uq.edu.au/research/cor3
Further info:	The supervisor CAN be contacted by students prior to submission of an
	application